NASA Technical Memorandum 104787
e Ty -;0%

J /‘/.‘/} /

Researc
and
Development
Annual

4 X rd

) Ty s e -

(NASA-TM-104787) THt JSC RESFARCH N9S-298106
ANC DEVELCPMENT ANNUAL REPQORT 1993

= (NASA. Johnson Space Center) 208 p

. unclas

G3/99 0051491 !994

NASA Technical Memorandum 104787

Research and Development
Annual Report
1994

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas

August 1994

Foreword

This is the second year for publication of the Johnson
Space Center (JSC) Research and Development Annual
Report (RADAR), which serves as a complement to the
Research and Technology Annual Report (RTAR). The
encouraging comments we received on the first report
affirmed the need for this document as an effective
mechanism for communicating JSC’s accomplishments in
the areas of research and technology development.

In the past year, the Agency has developed a new
strategic plan. NASA’s plan implements our mission and
continues to satisfy our customers through five strategic
enterprises: Mission to Planet Earth, Aeronautics, Human
Exploration and Development of Space, Scientific
Research, and Space Technology. One key feature of
these enterprises is the contribution to the quality of life
on Earth made by knowledge acquired and technology
developed as a result of the exploration of space and study
of the evolution of life.

Through advanced research and technology efforts,
each of NASA’s strategic enterprises contributes
significantly to our international competitiveness. In turn,
these contributions stimulate the economy by developing
advanced products and processes for the market place.
NASA has developed initiatives that focus on working
with the private sector to jointly develop and
commercialize new technologies. NASA Administrator
Dan Goldin has stated that “Technology transfer is a
fundamental mission—it is as important as any other
mission—and it must be pursued.”

NASA is reassessing, reasserting, and redefining how
it works with industry to accelerate the commercialization
of its technology. Specifically at JSC, the Center
Director, Dr. Carolyn Huntoon, has stated that “you will
see us initiating and participating in dual-development
consortia, industrial partnerships, regional alliances, small
business development, commercial technology
acquisition, and fast track mechanisms.”

One of J1SC’s continuing strategic goals is to
strengthen the Center as a recognized world-class
technical and scientific organization in the conduct of
space research and exploration. A key to our success in
this, in terms of both excellence in research and
technology development and the transfer of that data and
technology to the private sector, is enhancing our
communication with academia and industry. Because of
this, we are committed to publishing the results of our
work. Your comments and suggestions are an integral
part of that process. Please forward them to me via fax at
(713) 244-8452 or by phone at (713) 483-0695.

CHief Technologist

PRECEDING RAGE BLANK MOT F 7D

Fanr AN

AT o s
LN M :"'_

Contents

FOTEWOT ... ettt et te et e st e neteeh e e b bt e e s b e em e ea et e s b eh b sheteeeesh b aheteaeeeshbaeb st ane b e ebbeannnenarean it
ACTONYIM LIS ..o e eh oo e e o e e eh 2ot sec e e st ee e i e sh e et e em e e e e e e s s rmaeeanestenane s vii

Computer Hardware and Software

Applications of Advanced Pattern Classification Methods to Control Center AUtOmMationccoovverievveeiienienceenenneennenn 1-3
C Language Integrated Production System (CLIPS) ... e -5
CONFIG—Integrated Engineering of Systems and OPerationscc.coovieiiiiiiiiiiricinintieeein et sres et sene e 1-7
Costmodeler 1.0 An Automated Software Development Cost Estimation Tool ... e 1-11
An Electronic Document VIEWINZ SYSIEIMI...o..ooiiiiiii ettt ettt s et re e sant s e sresae s e sssrenen e I-13
Failure Environment Analysis TOOI APPICAIONScooiiiiiiiii e s 1-15
Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS) .. 1-22
A Prototype Supervised Intelligent Robot for Helping ASIIONAULSooveoiiiiiiiii e 1-31]
A Reactive Navigational Controller for Autonomous Mobile Robots ..., 1-36
Reengineering Legacy Software to Object-Oriented SYSIEMS (.o 1-42
Virtual Reality in Medical Education and ASSESSITENT ...t 1-44
Virtual Reality Library (VRL) ..o e s et 1-48

Medical, Life, and Space Sciences

The Effect of Gravitational Acceleration on Ventricular Filling:

Diastolic Ventricular Function in Weightlessness and One-g—Preliminary Results ... 2-3
Alternative Methods for Measuring Calcium Absorption and Kinetics in Humans Exposed to Microgravity 2-9
Characterization of Spacecraft Humidity CONAENSALEcocviiviiiiiiieiiiiiiii ettt st 2-12
Decompression Gas Phase Formation In Simulated Physiological Null Gravity ... 2-14
Longitudinal Study of Astronaut Health Mortality in the Years 1959-91 ... 2-20
Microgravity Encapsulation of DIUZs ... 2-28
Radiation Damage to Internal Organs from Low Energy Galactic Cosmic Ray Particles ..., 2-33
Radiation Studies on Chromosomal Aberrations in Human Lymphocytes ..., 2-36
Spacecraft Applications of Thermoelectric Refrigeration ... 2-41
Continuous BIOOd Pressure MOMILOL ..ottt ettt sttt eh e et st sn e st saas e enne s 2-45
Production of Reference Force on the Column of BIOOd ... 2-46
Design Considerations in the Development of the Life Sciences Spacelab Refrigerator/Freezer or

Why Spaceflight Refrigerators Are Different From Your Domestic Refrigerator ..o, 2-48
Gas Analyzer Systems To Support Life Sciences EXPeriments ..o 2-52
A Passive and Rapid Intravenous Infusion for Use in Spaceflight Experiments ... 2-56
Refrigerator/Freezer Based on Stirling Cycle Cooler ... s 2-60
Standard Interface Rack (SIR) ... s 2-62
TRETMOCIECIIIC FIEEZET ...eiiiiit it st s e s bbb be s 2-66
Mir Interface to Payload Systems (MIPS) ..o 2-68
Estimate of Cancer Risks From Low Earth Orbit Flights ..., 2-70
Stability of White Blood Cells in Whole Blood Stored at Room Temperature ..., 2-74
Discrimination of Ocean Conditions Using Space Shuttle Polarization Photographyc.cccoccoiiiiniincinicieeeens 2-78
In Situ Resource Utilization — Making Oxygen and Ceramics on the Moo ..ot 2-81
Space Systems "

An Analysis of the Modes and States for GENETiC AVIOMICS ...ccoouiruiiriirimieienie ettt ettt 33
Arc-Jet Testing of Damaged RCC-3 Repaired Using Preceramic Polymers ... 3-7
EMU Electronic Cuff Checklist DevelOPmMEnt ..ottt st 3-11
Development of Digital Technology for a Reprogrammable Receiver............. i 3-13
Application of Dexterous Space Robotics Technology to Myoelectric Prostheses ... 3-14
Electromagnetic Probe Technique for Fluid Flow Measurements ... 3-24
Hybrid Regenerative Water RECOVETY SYSIEIM ...oouiiiiiiiii i e s eacns e 3728

PRECEDING PAGE BLANK NOT FILMED PAGE W INTENTIONALLY BLANK

Hybrid Vision EYe TIACKINGcciuiciiiiimieeiitiieenireriee sttt ettt er st sae s sa st sae st saosaes st shesanassanonesns 3-32

The Materials Chemistry of Atomic Oxygen: Low Earth Orbit (LEO) and the Laboratoryccovccevniviiinncicicnn. 3-35
A Mobile Communications Space Link Between the Space Shuttle Orbiter and

the Advanced Communications Tracking Satellite............c.ocoeiiiiiiiieiiiii e e 3-48
Orbital Debris Radar Design StUAYc.cooeiiiriiiiiiene et ere st s ne s rae s e sre s e nneanees 3-53
Rendezvous and Prox Ops Program New Capability Developmentccoooieoiiiniociiiiiei e 3-56
Standards-Based Autocode Generation for Flight Computers ... e 3-60

vi

A&RD

ACD
ACTS

ADC

Al

API

ARC
ARMSEF

ASIC
ATCS

B
BDS
BFO
BPSK

CAF
CAM
CCTV
CFC
CLIM
CLOS
CPD
CPU
CSDL
CT
CTSD
CV/CP
CvVD

DAC
DAP
dBi
dBWi
DC
DCS
DDS
DDT
DGA
DHM
DIO
DOE
DOF

Acronym List

Automation and Robotics Division
analog-to-digital

acid citrate dextrose

advanced communications technology
satellite

analog-to-digital channels
analog-to-digital converter

artificial intelligence

application programming interface
Ames Research Center

Atmospheric Reentry Materials
Structures Facility
application-specific integrated circuit
active thermal control system

block diagram specification
blood-forming organs
biphase shift keying

computerized anatomical female
computerized anatomical man
closed-circuit television
chlorofluorocarbon

Common LISP Interface Manager
Common LISP Object System
crew passive dosimeter

central processing unit

Charles Stark Draper Labs
computerized axial tomography
Crew and Thermal Systems Division
cardiovascular/cardiopulmonary
chemical vapor deposition

digital-to-analog channels
digital autopilot

decibels indirect

decibels referred to 1 W indirect
direct current
decompression sickness
Digraph Data System
direct drive test

digraph analyzer
dexterous hand master
digital input/output
Department of Energy
degree(s) of freedom

vii

DPC
DPSK
DTO

E

EM
EMG
EMI
EMU
EOIM-II

ERF
ESA
EVA
EVAHR

F

FDDI
FDIR
FEAT

FISH
FMEA
FOV
FPMM
FRZ
FSSR
FT/RM

G
GAMS
GASMAP

GCR
GI
GISD
GMT
GPC
GPIB

H
HDTV
HL
HMD
HRM
HRWRS

HVAB

distributed pore chemistry
differential phase shift keying
development test objective

electromagnetic

electromyographic

electromagnetic interference
extravehicular mobility unit

Evaluation of Oxygen Interactions with
Materials-II1

extended real-time FEAT

European Space Agency
extravehicular activity

extravehicular activity helper/retriever

fiber distributed data interface

fault detection, isolation, and recovery
failure environment analysis tool

flash evaporator system

fast Fourier transform

fluorescent in situ hybridization
failure mode effects analysis

field of view

flow-path management module
freezer

Flight Software System Requirements
fault tolerance analysis and redundancy
management

Gas Analyzer Mass Spectrometer

Gas Analyzer System for Metabolic
Physiology

galactic cosmic radiation (rays)
gastrointestinal

Galveston Independent School District
Greenwich Mean Time

general purpose computer

general purpose interface bus

high definition television

handheld laser

head-mounted display

high rate multiplexer

hybrid regenerative water recovery
system

high-velocity neutral-atom beam

IO
ICA
ICD
IEEE

IFTAS
IGOAL

IML
IMU
PO
IRIG-B
ISAC
IS1

v

JH

JPL
JITC

K cell
KASTA

LAN
LANL
LCD
LDEF
LEO
LESC

LET
LSAH
LSF
LSPD
LV
LVLH

mAb
MAN
MDA

MER
MET
MICOM
MIDAS

MIPS
mips
MIT
MMIC

input/output

infusion cuff assembly

International Classification of Diseases
International Electrical, Electronic, and
Electromechanical

Integrated Fault Tolerant Avionics
System

Integrated Graphics, Operations, and
Analysis Laboratory

International Microgravity Laboratory
inertial measurement unit

iodinated poppyseed oil

interrange instrumentation group B
Intelsat solar array coupon

Integrated Systems, Inc.

intravenous

Jameson hand

Jet Propulsion Laboratory

joint transform correlation

killer cell

Ku-Band Automated Self-Test Analyst

local area network

Los Alamos National Laboratory
liquid crystal display
Long-Duration Exposure Facility
low Earth orbit

Lockheed Engineering and Sciences
Company

linear energy transfer

longitudinal study on astronaut health
line spread function

Life Sciences Project Division

left ventricle

local vertical local horizontal

monoclonal antibodies

manual

materials dispersion apparatus
McDonnell Douglas Aerospace
Mission Evaluation Room

mission elapsed time

(Army) Missile Command

MER Intelligent Diagnostic and
Analysis System

Mir interface to payload systems
million instructions per second
Massachusetts Institute of Technology
monolithic microwave integrated circuit

MOD
MRI
MSL
MTF

NAS
NCCLS

NCRP

OAFE
OOM
OR/F
ORU

PC
PC-AT

PCMMU
PGSC
PLBAY
POL
PRSD
PSF
PSPA
PVC
PWM

R.O.
RAP
RC
RCS
REF
RFP
RM
RMS
RPOP

SBC
SCSI
SIR
SIRA
SL-J
SLS
SMR
SMU
SOR/F
SPAS

Mission Operations Directorate
magnetic resonance imaging
Mode! Support Library
modulation transfer function

National Academy of Sciences
National Committee for Clinical
Laboratory Standards

National Council on Radiation
Protection and Measurements

Orbiter/ACTS flight experiment
object orientation manipulator
Orbiter refrigerator/freezer
orbital replacement unit

personal computer

personal computer-advanced
technology

pulse code master memory unit
payload and general support computer
payload bay (software)
procedure-oriented language

power reactant storage and distribution
point spread function

phase shift/power amplifier module
polyvinylchloride

pulse width modulation

reverse osmosis

reactive action packages

rack controller

reaction control system

refrigerator

request for proposals

redundancy management

remote manipulator system
Rendezvous and Prox Ops Program

single based computer

small computer system interface
standard interface rack

Shuttle Integrated Risk Assessment
Japanese Spacelab [mission]
Spacelab life sciences [missions]
standardized mortality ratio

single motor unit

Stirling Orbiter refrigerator/freezer
Space Pallet Satellite

SSEIC

SSF
SSFP
SSM
STS
SwRI

TCS
TDS
TEF
TERF
TIMS
TLD
TLH
TMIS

TOC
TOF
TTL

UCB
ucCs
UMDH
UMKC
UTMB

uv

VCXO
VDAS
VIVED
VME
VRL
VR
vUVv

WBC
WSF
WWCTS

XPS

Space Station engineering integration
contractor

Space Station Freedom

Space Station Freedom Program
Solid Surface Modeler

Space Transportation System
Southwest Research Institute

trajectory control sensor

total dissolved solids
thermoelectric freezer
thermoelectric refrigerator freczer
thermal ionization mass spectrometer
thermoluminescent dosimeter
translational hand controller
Technical Management Information
System

total organic carbon

time of flight

transistor-transistor logic

user code block

user clock signal

Utah/MIT dexterous hand

University of Missouri/Kansas City
University of Texas Medical Branch at
Galveston

ultraviolet

voltage controlled crystal oscillator
Video Digital Analysis System
Virtual Visual Environment Display
Versa-Module Eurocard

Virtual Reality Library

virtual reality

vacuum ultraviolet

white blood cell

Wake Shield Facility

waste water collection and transport
system

X-ray photoelectron spectroscopy

Computer
Hardware

and
Software

Applications of Advanced Pattern Classification Methods to Control Center Automation

Robert O. Shelton
Johnson Space Center/PT

Introduction

Over the past several years, the Software Technology
branch (STB) has maintained a state-of-the-art program of
research and development in the general area of Adv-
anced Software Architectures (ASAs), a broad area
including neural networks, fuzzy logic, signal and image
processing, and genetic algorithms. This research has led
to a number of papers and patents as well as popular
software products such as NETS and Splicer. The subject
of this report is an application that has rapidly moved
these methods from the laboratory into the Mission
Control Center (MCC) as tools for flight controllers.

Problem Statement/Description

In the MCC, controllers visually monitor critical
systems on the Space Shuttle Orbiter by means of paper
strip chart displays. In some cases, such as that of the
Electrical Generation and Integrated Loading (EGIL)
system (fig. 1), the controllers must recognize signatures
of various events by inspection of the strip chart in order
to track the state of the system, i.e., which loads are
present at any given time.

With the introduction of the Real-Time Data System
(RTDS) which makes over 7500 shuttle telemetry chan-
nels available on conventional workstations at JSC as well
as other NASA centers, it is now possible for researchers
to tap into real-time data in order to develop advanced
automation techniques with real, live data. To facilitate
the application of advanced software technology to issues
of control center automation, it was decided that a tool kit
for pattern recognition would be assembled. This set of
tools would include software for data acquisition, man-
agement of training/test databases, pattern recognition,
event detection, signal processing, and application
configuration. The applications spawned from the basic
tool box would be tailored to specific flight control
disciplines, would run on RTDS workstations (including
those in the control center), and identify signatures in real
time.

Approach

As a first test of the concepts, the EGIL flight control
discipline was selected as the target domain for an initial
prototype application. The EGIL signatures provide an
ideal situation in which advanced pattern recognition
methods could be tested and, if successful, contribute
significantly to improved efficiency and safety in an

1-3

operations environment. To this end, a team was assem-
bled in late 1992 to build the prototype EGIL application.
The initial prototype would subsequently be generalized
to form the nucleus of the tool kit. In particular, the EGIL
application, which accesses electrical power utilization
information using RTDS services, includes a screening
algorithm that captures events and several pattern recog-
nition algorithms that process these events. The algo-
rithms tested to date include cross correlation, a Bayesian
classifier, a back-propagation neural network classifier, a
“binary” neural network, and a basis function classifier.
This application has run in the MCC as well as on distri-
buted RTDS workstations during six shuttle flights. The
classification methods are evaluated post-flight by compa-
rison with controller logs and consultation with EGIL
controllers. During the course of the development of the
EGIL application three techniques (the Bayesian classi-
fier, the neural network, and the basis function classifier)
emerged as viable candidates for on-line processing of
EGIL signatures achieving percent correct scores that
improved from the low 70’s to the current mark, which is
in the mid 90’s.

Consistent with the original thrust of the project, the
initial architecture has been generalized to provide the
capability of generating discipline-specific applications.
The basic form of the tool kit is the “plug-in module”
architecture which allows application developers to write
or select existing software modules and generate the
desired application by specifying a data flow graph. The
plug-in architecture has been used to construct the latest
version of the EGIL application and a new application to
do spectral analysis of accelerometer output from inertial
platforms.

The tool kit ts not a showcase for any particular tech-
nology, but is sufficiently generic to provide a framework
for multiple signal identification methods to be applied to
any set of channels supplied by RTDS. To this end, the
techniques listed above have been tried and evaluated,
with the results documented in post-flight reports. The
methods that have been implemented range from the
classical cross-correlation algorithm which essentially
matches the incoming signal against stored templates to a
Bayesian classifier using hand-coded feature extraction,
to several purely data-driven methods—the neural net-
work approaches. All of these methods have character-
istics which make them desirable in some ways and
undesirable in others, and it is clear now that the method
used for a final MCC application would include
components from neural networks, statistical classifiers
(the Bayesian approach) and some sort of nearest

Computer Hardware and Software

PRECEDING PAQE BIAMY WO % v

neighbor scheme such as cross correlation. By providing
for the construction of hybrid techniques the strengths of
each method can be exploited to yield the best possible
end application.

The core application was built by David Hammen
(The MITRE Corporation) and Dr. Robert Shelton (STB).
Important contributions were provided by Dr. Philip Laird
(ARC), Ron Saul (Recom Technologies, Mountain View
CA)), Dr. Travis Moebes (SAIC Houston), and two STB
co-op students, Robert Jones and Robin Benedetti. The
team reported directly to Chris Culbert (STB) and Linda
Perrine (MOD) in weekly meetings.

Because the project was built from multiple software
modules from various sources, an informal but strict
system of configuration management was adopted. Early
on, the outlines of the final tool kit and the interfaces
between components were established. Since the project
involved researchers from two centers in geographically

current (Amps)

0 1 2

time (secs)

3

separate locations, electronic mail, teleconferences, fax
and internet remote login capabilities were used
extensively.

Results

Given the success of the prototype EGIL application,
this project will extend in two directions during the next
year. Along one path, the EGIL application will be
improved to include more signatures, and increase the
accuracy of identification to a target percentage in the
high 90’s. The second path will involve the application of
the basic tool kit to other MCC disciplines. Work has
already begun on the latter path, where an application is
being developed to help the Guidance, Navigation, and
Control flight controllers analyze inertial measurement
unit behavior.

Cabin Fan

—O—— Water Loop

. Prop Valve

. 0.0.4 000000040000 0:0000¢00%2000.0.0,,00,400%00000-004

4 5 6

Figure 1. Sample electrical equipment activation signatures.

Computer Hardware and Software

C Language Integrated Production System (CLIPS)

Gary Riley and Brian Donnell
Johnson Space Center/PT

Conventional programming languages, such as FOR-
TRAN and C, are designed and optimized tor the proce-
dural manipulation of data (such as numbers and arrays).
Humans, however, often solve complex problems using
very abstract, symbolic approaches which are not well
suited for implementation in conventional languages.
Although abstract information can be modeled in these
languages, considerable programming effort is required to
transform the information to a format usable with
procedural programming paradigms.

One of the results of research in the area of artificial
intelligence has been the development of techniques
which allow the modeling of information at higher levels
of abstraction. These techniques are embodied in lan-
guages or tools which allow programs to be built that
closely resemble human logic in their implementation and
are therefore easier to develop and maintain. These pro-
grams, which emulate human expertise in well defined
problem domains, are called expert systems. The poten-
tial payoft from expert systems is high: valuable exper-
tise can be captured and preserved, repetitive and/or
mundane tasks requiring human expertise can be auto-
mated. and uniformity can be applied in decision-making
processes. The availability of expert system tools has
greatly reduced the effort and cost involved in developing
an expert system and an entire industry has grown to
support the development of these types of specialized
tools.

Despite the wide variety of expert system tools avail-
able, expert systems had generally failed to make a major
impact in application environments by the mid 1980s. In
part, this failure was caused by a lack of options for
deploying expert system applications within conventional
computing environments. To solve this problem, the
Software Technology Branch at JSC developed the initial
version of the C Language Integrated Production System
(CLIPS) in 1985. CLIPS was designed to address several
issues key to NASA. Among these were the ability to run
on a wide variety of conventional hardware platforms, the
ability to be integrated with and embedded within conven-
tional software systems, and the ability to provide low
cost options for the development and delivery of expert
systems. At the time of its development, CLIPS was one
of the few tools that was written in C and capable of

running on a wide variety of conventional platforms.
CLIPS is a continually evolving product with new fea-
tures and capabilities added on a regular basis. The latest
version of CLIPS, version 6.0, was released in May of
1993. Machine specific interfaces have been developed
for Apple Macintosh, Microsoft Windows, and X Win-
dow environments. Figure 1 shows the CLIPS interface
for the Macintosh computer. A version of CLIPS written
completely in Ada, CLIPS/Ada, has also been developed.
Although originally developed to aid in the
construction of acrospace-related expert systems, CLIPS
has become a shining example of NASA’s technology
transfer program with over 5,000 users worldwide. In
addition to its widespread use throughout NASA, the
military, and numerous Federal bureaus and agencies,
CLIPS is also widely used throughout industry and
academia. CLIPS has been made available to the general
public for a nominal fee through the Computer Software
Management and Information Center, the distribution
point for NASA software. At Cornell University, CLIPS
was used to develop decision support systems to help in
the management of dairy herds. At California Poly-
technic State University, CLIPS was used to develop
software which automates the complicated and costly
process of consultation and revision among architects,
structural engineers, and other specialists involved in
home or office building design. At Cray Research, Inc.,
CLIPS was used to develop an expert system for the
diagnosis and repair of the Cray-3 supercomputer. At
Clarity Software, Inc., CLIPS was used to develop a
“smart” mail program to help users manage their
electronic mail. At the law firm of Brooke & Brooke,
CLIPS is used to decide which facts from a casefile are
most pertinent and should be included in a legal pleading
for the court. Because the CLIPS source code is readily
available, numerous groups have saved years of
development time by using CLIPS as the basis for their
own expert system tools. To date, three commercially
available tools have been derived from CLIPS. In
general, the development of CLIPS has helped to improve
the ability to deliver expert system technology throughout
the public and private sectors for a wide range of
applications and diverse computing environments.

Computer Hardware and Software

& File Edit Buffer Edecution Browse

lindow

1=
9

Dialog

Sll=—————

Facts (MAIN)

CLIPS> (run>

Solution found:

Solution found:

CLIPS> (reset)
cLIPS> |

Farmer moves with goat to shore-2.
Farmer moves alone to shore-1.

Farmer moves with fox to shore-2.
Farmer moves with goat to shore-1.
Farmer moves with cabbage to shore-2.
Farmer moves alone to shore-1.

Farmer moves with goat to shore-2.

Farmer moves with goat to shore-2.
Farmer moves alone to shore-1.

Farmer moves with cabbage to shore-2.
Farmer moves with goat to shore-1.
Farmer moves with fox to shore-2.
Farmer moves alone to shore-1.

Farmer moves with goat to shore-2.

[
nirdnin
wn'J_.o

<l

Cinitial-fact)

(status (search-depth 1> (par
(opposite-of shore-1 shore-2>
(opposite-of shore-2 shore-1)

]Q [T}

el

instances (MAIN)

[initial-object] of INITIRL-OBJECT

=

<l

Gl

=

<l

=

Agenda (MAIN)

Focus

Globals (MAIN)

move-qlone: f-1,f-2
move-wi th-fox:
move-wi th-goat:
move-wi th—cabbage:

0000

f-1, f-2
-1, -2
f-1, -2

MATN

©

<l

[

<l

®

&l

@l

[]l

[

=l

[©

Figure 1. CLIPS Macintosh interface.

Computer Hardware and Software

CONFIG—Integrated Engineering of Systems and Operations

Jane T. Malin
Johnson Space Center/ER

Abstract

CONFIG 3 is a prototype software tool that supports
integrated conceptual design evaluation early in the prod-
uct life cycle. It supports isolated or integrated modeling,
simulation, and analysis of the function, structure, behav-
ior, failures, and operation of system designs. Integration
and reuse of models is supported in an object-oriented
environment providing capabilities for graph analysis and
discrete event simulation. Integration is supported among
diverse modeling approaches (component view, configu-
ration or flow path view, and procedure view) and diverse
simulation and analysis approaches. Diverse design
domains, including mechanical and electro-mechanical
systems, distributed computer systems, and chemical
processing systems. are provided for integrated engineer-
ing support.

Introduction

The core of engineering design and evaluation is
analysis of physical design. Thus, today’s computer-
aided engineering software packages often do not provide
for conceptual design evaluation early in the life cycle or
for engineering for operation, fault management, or sup-
portability (reliability and maintainability). Benefits of
engineering for operations and supportability include
more robust systems that meet customer needs better and
that are easier to operate, maintain and repair. Benefits of
concurrent engineering include reduced costs and short-
ened time for system development. Integrated modeling
and analysis of system function, structure, behavior,
failures, and operation is needed early in the life cycle.

Problem

Conventional system modeling approaches are not
well suited for evaluating conceptual designs early in the
system life cycle because they require more knowledge of
geometric or performance parameters than is usually
available early in design. More abstract models can sup-
port early conceptual design definition and evaluation,
and also remain useful for some later analyses. Compo-
nent-connection models provide one such useful abstrac-
tion, and discrete events another. Discrete event
simulation technology combines both abstractions, for
evaluation of conceptual designs of equipment configura-
tions in operations research.’ CONFIG uses these
abstractions, with some enhancements, to define and
cvaluate conceptual designs for several types of systems.

The initial CONFIG project goal was to support
simutation studies for design of automated diagnostic

software for new life-support systems®. The problem was
to design an “expert system” on-line troubleshooter
before there was an expert. The design engineer could
use a model of the system to support what-if analyses of
failure propagation, interaction, observability, and test-
ability. This activity is similar to failure modes and
effects analysis®, but uses comparative simulations of
failure effects to develop diagnostic software. Conven-
tional simulation software was not up to this challenge,
but discrete event simulation software has been.
CONFIG supports the use of qualitative models for
applying discrete event simulation to continuous systems.

CONFIG Goals

A major design goal for CONFIG is to support con-
ceptual design for operations and safety engineering.
Major tasks in conceptual design are design definition,
evaluation (by simulation and analysis), and documenta-
tion. Operations engineering focuses on the design of
systems and procedures for operating, controlling, and
managing the system in normal or faulty conditions.
Safety engineering focuses on prevention of hazardous
effects and conditions in the physical system or its opera-
tion. In these types of engineering, complex interactions
and interfaces among system components and operations
must be emphasized.

Another design goal of CONFIG is to bridge the gaps
between physical design engineering and other types of
engineering. Component-connection representations are
well suited for modeling and defining physical system
designs (as structures of interacting components) and op-
erations designs (as structures of interacting actions), as
well as interactions between system components and
operational actions. Discrete event models have been
used for this type of modeling for queueing and schedul-
ing problems, but can be extended to support conceptual
modeling in operations and safety engineering. This type
of modeling is also compatible with systems engineering
function diagrams.'

Approach

The CONFIG 3 project approach has been to
incrementally integrate advanced modeling and analysis
technology with more conventional technology. The
prototype integrates qualitative modeling, discrete event
simulation, and directed graph analysis technologies for
use in analyzing normal and faulty behaviors of dynamic
systems and their operations. The prototype has been
designed for modularity, portability and extensibility. A
generic directed graph element design has been used to

Computer Hardware and Software

standardize model element designs and to promote
extensibility. This directed graph framework supports
integration of levels of modeling abstraction and
integration of alternative types of model elements.

Enhanced Discrete Event Simulation Capabilities

In traditional discrete event modeling and simulation,
state changes in a system’s entities, called events, occur
discretely rather than continuously, at nonuniform inter-
vals of time. Throughout simulation, new events are
added to an event list that contains records of events and
the times they are scheduled to occur. Simulation pro-
cessing jumps from one event to the next, rather than
occurring at a regular time interval. Computation that
results in creation of new events is localized in compo-
nents, which are connected in a network. Any simulation
run produces a particular history of the states of the sys-
tem. Statistical simulation experiments, using random
variables in repeated simulation runs, are used to compare
design alternatives.

To enhance this discrete event simulation approach to
accommodate continuous systems, a number of new con-
cepts and methods were developed. These include com-
ponent models with operating modes, types of links
connecting components (“relations” and “variable clus-
ters™), state transition structures (“‘processes”), methods
for representing qualitative and quantitative functions
(“process language™), and a new simulation control
approach.

Digraph Analysis Capabilities

The CONFIG Digraph Analyzer (DGA) makes graph
analysis techniques available for evaluating conceptual
designs of systems and their operations. The DGA is
based on reachability search, and is implemented
generically for application to the many types of graph
data structures in CONFIG. DGA can support analyses of
completeness, consistency, and modularity. Analysis of
failure sources and impacts can be done by tracing the
paths from a given failure.

System Modeling

Devices are the basic components of a CONFIG
system model, connected together in topological model
structures with relations. Device behavior is defined in
operating and failure modes, which contain mode
dependent and mode transition processes. Modes are
connected in a mode transition digraph which delineates
the transition dependencies among the individual modes.

Device processes define change events in device var-
iables, and are conditionally invoked and executed with
appropriate delays during a simulation. Processes define
time-related behavioral effects of changes to device input
variables, both direction of change and the new discrete

Computer Hardware and Software

value that will be reached, possibly after a delay. Faults
and failures can be modeled in two distinctly different
ways. Failure modes can be used to model device faults.
Mode-transition processes can be used to model latent
device failures that cause unintended mode changes.
Relations connect devices via their variables, so that state
changes can propagate along these relations during
simulations. Related variables are organized into variable
clusters, to separate types of relations by domain (e.g.,
electrical vs. fluid connections). Relations can also con-
nect devices with device-controlling activities in opera-
tions models.

Flow Path Modeling

Flow is a property of many systems, whether the
substance flowing is a liquid or information. There are
two difficulties in modeling flows with local device
processes. First, flow is a global property of the topology
of the modeled system and the substances flowing within
it. Second, while dynamic changes in system structure
and flow can occur during operations, process
descriptions involving flow must often rely on
assumptions of static system topology. These factors
would limit the reusability of device descriptions to a
limited set of system structures.

A flow-path management module (FPMM) has been
implemented to address these problems. The FPMM is
separate from the module implementing local device
behavior, but the two modules are interfaced via flow-
related state variables in the devices. When FPMM is
notified during simulation of a local change in device
state, it recomputes the global effects on flows produced
by the local state change. The FPMM then updates the
state of flow in all affected devices. This design permits
the user 1o write reusable local device process
descriptions that do not depend on any assumptions
concerning the system topology.

FPMM uses a simplified representation of the
system, as a collection of aggregate objects, or “circuits.”
Further abstraction is achieved by identifying serial and
parallel clusters in the circuit.® In many cases,
configuration determination alone is sufficient to verify
flow/effort path designs, to establish flow paths for a
continuous simulation, for reconfiguration planning, and
for troubleshooting analysis (see Ref. 2 on cluster-based
design of procedures for diagnosis, test, repair, and work-
around in a system).

Operations Modeling

Activities are the basic components of a CONFIG
operations model, and are connected together in action
structures with relations. They represent procedures or
protocols that interact with the system to control and use
it to achieve goals or functions. Each activity model can
include specifications for what it is intended to achieve or

maintain. Activity behavior is controlled in a sequence of
phases, ending in an evaluation of results. Activity
behavior is defined by processes that model direct etfects
of actions, or that control device operation and mode
transitions to achieve activity goals. Relations define
sequencing and control between activities and connect
devices with device-controlling activities.

Operations models are designed to support operation
analysis with procedure models. These models are
designed to support analysis of plans and procedures for
nominal or off-nominal operation. The procedure
modeling elements are designed for reuse by intelligent
replanning software, and for compatibility with functional
modeling in systems engineering.

Model Development & Integration Capabilities
and Approach

CONFIG provides intelligent automation to support
nonprogrammer and nonspecialist use and understanding.
CONFIG embeds object-oriented model libraries in an
easy-to-use tool kit with interactive graphics and
automatic programming.

CONFIG provides extensive support for three
separable yet tightly integrated phases of user operation
during a modeling session: Library Design, Model
Building. and Simulation and Analysis. This includes a
graphical user intertace for automated support of
modeling during each of the phases including the
development of object-oriented library element classes or
templates, the construction ot models from these library
items, model inspection and verification, and running
simulations and analyses.

The integration of the phases enables an incremental
approach to the modeling process. Lessons learned from
analyses can be repeatedly and rapidly incorporated by
the user into an initially simple model. Support for these
phases as separate user activities fosters the achievement
of concurrent engineering goals. Different users can
define library elements, build models, and analyze models
at different times depending on area of expertise and
availability of resources. Support for the model building
phases spans all types of modeling that can be performed
in CONFIG, including component structure, behavior and
flow, and activity goals and structure.

Hosting

CONFIG is implemented in software that is portable
to most Unix workstations. The Common LISP Object
System (CLOS) is a highly standardized language. with
compilers for most of the commonly available
workstations. The user interface was implemented using
the Common LISP Interface Manager (CLIM), another
standardized tool built on CLOS.

Conclusions

CONFIG is designed to model many types of systems
in which discrete and continuous processes occur. The
CONFIG 2 prototype was used to model and analyze (1) a
simple two-phase thermal control system based on a
Space Station prototype thermal bus. (2) a reconfigurable
computer network with alternate communications
protocols, and (3) Space Shuttle remote manipulator
system latching and deployment subsystems.” The core
ideas of CONFIG have been patented.* CONFIG 3 has
added capabilities for graph analysis and for modeling
operations and procedures.

The CONFIG prototype demonstrates advanced
integrated modeling, simulation, and analysis to support
integrated and coordinated engineering. CONFIG
supports gqualitative and symbolic modeling, for early
conceptual design. System models are component
structure models with operating modes. with embedded
time-related behavior models. CONFIG supports tailure
modeling and modeling of state or contiguration changes
that result in dynamic changes in dependencies among
components. Operations and procedure models are
activity structure models that interact with system models.
The models support simulation and analysis both of
monitoring and diagnosis systems and of operation itself.
CONFIG is designed to support evaluation of system
operability, diagnosability, and fault tolerance. It also
provides analysis of the development of system eftects of
problems over time, including faults, failures, and
procedural or environmental difficulties.

Acknowledgments

The authors wish to thank Bryan Basham, Leslie
Ambrose, Ralph Krog, Debra Schreckenghost. Brian Cox,
Daniel Leitker and Sherry Land for their contributions to
CONFIG design and implementation.

References

'Alford, M., “Strengthening the System Engineering
Process.,” Engineering Management Journal, Vol. 4,
No. 1. March, 1992 , pp 7-14.

“Farley, A. M., “Cluster-based Representation of
Hydraulic Systems,” Proc. 4th Conference on Al
Applications, March 1988, pp. 358-364.

‘Fishman, G. S., Principles of Discrete Event Simulation.
Wiley, New York, 1978.

‘Forbus, K., “Qualitative Physics: Past, Present, and
Future,” Exploring Artificial Intelligence, edited by H.
Shrobe and AAAIL Morgan Kaufmann, San Mateo, CA,
1988.

SFullwood, R. R., and Hall, R. E., Probabilistic Risk
Assessment in the Nuclear Power Industry:

Computer Hardware and Sofrware

Fundamentals and Applications. Pergamon Press,
1988.

®Liu, Z., and Farley, A. M., “Structural Aggregation in
Common-Sense Reasoning,” Proc. 9th National
Conference on Artificial Intelligence (AAAI-91),
1991, pp. 868-873.

’Malin, J. T., Basham, B. D., and Harris, R. A., “Use of
Qualitative Models in Discrete Event Simulation for
Analysis of Malfunctions in Continuous Processing
Systems,” Artificial Intelligence in Process
Engineering, edited by M. Mavrovouniotis, Academic
Press, 1990, pp. 37-79.

$Malin, J. T., et al., “Discrete Event Simulation Tool for
Analysis of Qualitative Models of Continuous
Processing Systems,” U. S. Patent 4,965,743,
October 1990.

Malin, J. T., and Lance, N., “Processes in Construction of
Failure Management Expert Systems from Device
Design Information,” IEEE Trans. on Systems, Man,
and Cybernetics, 1987, SMC-17, 956-967.

““Malin, J. T., and Leifker, D. B., “Functional Modeling
with Goal-Oriented Activities for Analysis of Effects
of Failures on Functions and Operations,”
Informatics and Telematics, 1991, 8(4), pp 353-364.

Computer Hardware and Software

Costmodeler 1.0
An Automated Software Development Cost Estimation Tool

G. Bernie Roush and Robert G. Phillips*
Johnson Space Center/PT
*MITRE

Introduction

The cost of developing computer software continues
to consume an increasing portion of many organizations’
total budgets, both in the public and private sector. The
capability to produce reliable estimates of the effort and
schedule required to develop a candidate software product
becomes more important as this trend develops. The
program called COSTMODELER (CM) was developed to
provide an in-house capability to perform development
cost estimates for NASA software projects. CM is an
automated software development cost estimation tool
which incorporates a generalized cost model template
based upon five accepted cost estimation algorithms,
including the latest models for Ada development and
incrementally developed projects. The principal
characteristic that sets CM apart from the other software
cost estimation programs is that it uses a model template
that supports multiple user-configurable models rather
than a single model definition. New models can be
designed within the template, and all of the models can be
recali-brated and redesigned to better reflect an
organization’s known productivity data and development
environment. Careful use of the capabilities in CM can
significantly reduce the risk of cost overruns and failed
projects.

Problem Statement/Description

Several commercial software cost estimation tools
are presently avatlable. However, their cost makes them
most appropriate for use in central cost analysis offices as
opposed to being distributed to a fairly large number of
middle managers. NASA management therefore decided
to initiate the development of an in-house tool that would
contain multiple estimating models, could be freely
distributed within the agency, and could be completely
customized to adapt to the changing NASA software
development environment. This tool would also be
sufficiently user friendiy that it would be useful to people
who were not protessional cost analysts without requiring
tormal user training.

The original program, called COSTMODL, was
developed in 1986. It provided several distinct models for
performing software development cost analysis. This
program has enjoyed broad acceptance within the
software cost estimation community. [t is currently being
used at more than 400 installations throughout the
aerospace community, government agencies, DOD, and
academia. It 1s a principal estimating tool in use at NATO
headquarters in Brussels. It is also being used as a

teaching tool at several universities, and was recently
selected as the best overall implementation of the
Constructive Cost Model (COCOMO) in a competitive
evaluation conducted by MIT's Sloan School of
Management. COCOMO is a set of several widely used
software costing models originally developed by Dr.
Barry Boehm in 1981. COSTMODL is also being
distributed to the students and staff at the Defense
Systems Management College. This distribution channel
results in COSTMODL being introduced to
approximately 300 organizations per year throughout
DOD.

Program Description

While the individual models in COSTMODL could
be calibrated in a limited fashion, they could not be
significantly modified. Also, the code had become
obsolete in terms of data manipulation and storage. user
interface, and maintainability. There were a number of
changes needed in COSTMODL that were determined
over the course of five years of user support for the old
tool. Most importantly, better support for using the
estimate throughout the actual development life cycle to
monitor progress was desired. This capability would
provide incentive for project managers to collect actual
development cost data that could be used to better
calibrate existing models and develop new models if
needed.

To incorporate these needed changes and to better
provide for future enhancements, it was decided to
completely re-engineer the old tool. Since the new tool
was to be a complete replacement, rather than simply an
upgrade, the name was changed to CM.

Results

During the 1993 fiscal year, the new program was
completely designed, implemented, and tested.
Distribution began in October. 1993. The final products
were the CM program itself, a users manual, and a
technical manual. CM was written in object-oriented
Pascal and runs on IBM PCs and compatibles. This
platform was chosen because this class of computers is
most widely used by managers and project leaders
throughout NASA. CM contains many significant
features and capabilities, which are discussed following.

CM uses model templates to define the estimation
models. Each model consists of five parts: the basic
effort and schedule equations, the cost driver definitions,
the life cycle definition, the function point sizing

Computer Hardware and Software

definitions, and the language definitions. These various
parts can be recombined to form new models, and new
parts can be created as desired. CM is shipped with
several standard models, including the four most com-
monly used COCOMO models, a model developed at JSC
called KISS, and a COCOMO variant developed by the
Air Force called REVIC.

Each estimate can be decomposed into a hierarchy of
subcomponents to any desired level of detail. The user
can navigate the potentially complex project structure
using a graphic structure browser. Extensive use of
default values at all levels ensures data consistency and
minimizes user inputs.

An incremental development model gives a flexible
mechanism for producing estimates for projects that
consist of a series of sub-projects, each with its own
deliverable.

The subcomponent sizes and cost driver values for
each subcomponent can each be defined using a normal,
beta, or uniform distribution. These ranges of uncertainty
can be used in a Monte Carlo simulation to determine the
total uncertainty in project size, effort, and schedule.

Actual project data can be imported and automatic-
ally compared with the estimated values to determine
where the actual and estimated values have deviated. The
estimate can then be revised to better fit the actual, and
reasons for the discrepancy can be investigated.

Extensive annotation capabilities can be used to des-
cribe all model parts and all components in an estimate.
This can be used to document all decisions, sources of
information, etc., used to produce the estimates.

A complete data management and protection system
provides support for multiple users and password
protection. Multiple versions of an estimate can be

created and managed to provide estimates using different
scenarios or a time sequence of estimates.

A sophisticated graphical user interface provided
many tools for greater productivity, such as context-
sensitive hypertext help, on-screen graphs, and reports.
Complete reporting capabilities provide access to all data
in the system.

Future Plans

CM has already received very favorable reviews from
the user community. Future work will emphasize training
and user support to maximize the possible benefits.
Future plans for CM include developing training material
and providing support for cost estimation at JSC. In
particular, there are plans to support the software metrics
work in other NASA organizations by providing an
interface mechanism between other metrics tools and CM.
There are several enhancements to CM being considered,
including automated model calibration, enhanced printing
capabilities, and enhanced import/export capabilities. If
there is a need within NASA, the work may also include
porting the tool to UNIX, Windows, and/or Macintosh
platforms.

References

A. J. Albrecht, “Measuring Application Development
Productivity,” SHARE-GUIDE, 1979, pp. 83-92.

B. W. Boehm, “Software Engineering Economics,”
1981.

B. W. Boehm, “Ada COCOMO: TRW 10OC Version,”
Third Annual COCOMO Users’ Group Meeting,
November 1987.

Computer Hardware and Sofrware

An Electronic Document Viewing System

Lui Wang, Bebe Ly, Albert Leigh*, Stan Smith*, Zack Crues*, and Wes White**
Johnson Space Center

*LinCom
**]-Net
NASA's space program, like many other technical HyperMan (Hypertext-Manual) is a software tool
programs of its magnitude, 1s supported by a large volume which enables the users of technical documentation, such
of technical documents. These documents are diverse as as flight controllers, to have rapid on-line access to infor-
well as abundant. Management, maintenance, and retrie- mation with a full range of hypermedia capabilities. The
val of these documents is a challenging problem by itself, system supports exact page representation of paper-based
but relating and cross-referencing this wealth of informa- documents with hypertext features. The features support
tion when it is all on a medium of paper is an even greater functions such as full-text search, key word search, data
challenge. retrieval, and traversal between nodes of information as
Bock Markup Action Traversal Hislory Help E% EE
3ECTION 2 - SPACEHAR OVERVIEW ;E -
I
‘ 21 OBJECTIVES OF QVERVIEW i
The SPACEHAB averylew will fravide INe studert with, : PRI j iy
i - A generai Hescnplion of the SPACEHAB module and #s purpase M)
H - Description of the operational cancept of SPACEHAS : -
! - Description of SPACEHAB Jackers and racks and the coding] R it
q)stem et 10 describe thedr locations. i it
- Description of SPACEHAE caordinale system i i - [
- Locatian of stowage snd lighting - L 4 i
- Descnption of the canfiguralion of SPACEHAE subsysiams within N I" ‘;;‘5&5 ;l
! the mdule ~ [’ i ‘%EM o
{ - Names ang functions of major SPACEHAB subsysieme - ‘L!\.I'_- s e ' £ This 15 my
22 ' ; Figure 2-1 SPACEHAB Concept personal
The SPACEHAR " iqnea ¢ 3
s Spaes e et dtack wgormens secamainmun e SeacH@noaue n 32 met org a1 2nw g 1f ANINOttION.
The SPACEHAE system cansists of a medule which (s flown fonvand in additional 1j1l]ﬂ cubic fest (391 cubic meters) ulp’ruswmaﬂ
the or.:"tsn(pa::;‘aﬂ n:?:nz:L:g:’:ql‘g}g::gs:g“;cﬁ;?m I::;‘?;; tang’ the Shulfle’s manned workinp space. Figure 2-2 provides a sumi “
I 1Ac ra A vites s W
grtwmen 1o work Ilﬂy !XPQV&I!HIS In B tNi-sleeve p!ﬂvl mnme‘:« F(gum <=1 : the module ﬂ!ﬂcﬂpﬂon
iustrates the SPACEHAB modula as flowen in tha Crades H
SPACEHAB 13 dasigned to provide ‘ The text can be hl hli hted
| - & use-Mendly, @atively I0w cast means to access space, g . g
; - d- of frea t days,
| e e T — and have hypertext links.
| Craw SUppOtad EPanmert operations,
| an e hebRat fof duration ap ;and
‘ ac ar) Of wiewp ot for @xternel I
‘ ohservalion f
i
: H

Figure 1. The HyperMan System.

1-13 Computer Hardware and Sofhware

well as speeding up the data access rate. They enable
pertinent documents to have relationships and allow the
user to explore information naturally through non-linear
links. In addition, HyperMan is designed for ease of use
and minimum training requirement. It provides hyper-
media capabilities for the user without imposing
hypermedia theory and skill requirements. HyperMan
supports many of the traditional pencil and paper tools for
annotation, such as electronic notepads, highlight markers
and bookmarks. These capabilities are essential for the
flight controllers to perform their normal duties. Figure 1
depicts some basic functions of HyperMan viewer.
HyperMan can currently import ProWrite and Microsoft
Word documents. HyperMan automatically creates the
table of contents and navigational links for direct access

to sections, figures and keywords. Presently, HyperMan
is being used as the on-line training manual for the
SpaceHab Intelligent Familiarization Trainer (SHIFT).

The original intent of this project is to support the use
of electronic document viewing for rapid access of infor-
mation in the Mission Control Center environment. The
HyperMan system is being extended to be used in the
office environment, to support heterogeneous platforms,
to be able to import various document formats, and to
eventually support wide area networking capability. New
features such as shared and persistent annotations across
different versions of a document are being added. Based
on the object modeling technique (OMT) and object-
oriented design, the system can further be extended 1o
provide multimedia capabilities.

Computer Hardware and Software

I-14

Failure Environment Analysis Tool Applications

Ginger L. Pack and David B. Wadsworth*
Johnson Space Center
*Lockheed

Abstract

Understanding risks and avoiding failure are daily
concerns for the women and men of NASA. Although
NASA’s mission propels us to push the limits of technol-
ogy, and though the risks are considerable, the NASA
community has instilled within it the determination to pre-
serve the integrity of the systems upon which our mission
and our employees’ lives and well-being depend. One of
the ways this is being done is by expanding and improv-
ing the tools used to perform risk assessment. The failure
environment analysis tool (FEAT) was developed to help
engineers and analysts more thoroughly and reliably con-
duct risk assessment and failure analysis. FEAT accom-
plishes this by providing answers to questions regarding
what might have caused a particular failure; or, con-
versely, what effect the occurrence of a failure might have
on an entire system. Additionally, FEAT can determine
what common causes could have resulted in other combi-
nations of failures. FEAT will even help determine the
vulnerability of a system to failures, in light of reduced
capability. FEAT also is useful in training personnel who
must develop an understanding of particular systems.
FEAT facilitates training on system behavior by provid-
ing an automated environment in which to conduct “what-
it evaluation. These types of analyses make FEAT a
valuable tool for engineers and operations personnel in
the design, analysis, and operation of NASA space
systems.

Introduction

FEAT was developed as part of an effort to find ways
to better identify and understand potential failures that
threaten the integrity of NASA systems. Past and current
methods of failure assessment consist of developing often
enormous amounts of documentation in the form of fail-
ure mode effect analysis (FMEA) worksheets. Engineers
create these worksheets by attempting to exhaustively
enumerate potential system failures and consequences.
Hazards analysis is performed in a similar manner;
experts are gathered together and are asked to brainstorm
about the hazardous manifestations of various failures.
System knowledge and experience are necessary for
ensuring the comprehensiveness of this approach.
However, there are troubling drawbacks to this technique.
First, it is ditficult to anticipate every scenario. Analysis
is also inherently constrained by the limits of actual
experience. Further, such methods lack consistency and
do not enforce a standard level of coverage. Although
there is certainly much to be credited to knowledge

-1

acquired through experience, it is not sufficient to avoid
unanticipated interactions which may lead unexpectedly
to undesirable consequences. As many industries have
learned, experience sometimes comes at too high a cost.
NASA has been looking for better ways to anticipate
failure and for tools to assist in “designing out” potential
problems. FEAT was developed to address this problem.

Technical Approach

FEAT is a software application that uses directed
graphs (digraphs) to analyze failure paths and failure
event propagation. The behavior of the systems to be
analyzed is represented as a digraph. Then, the digraph
model of the system is used by FEAT to answer questions
concerning the cause and effects of events which are
captured in the model. Therefore, the first step in using
FEAT is to create the digraph model of the system in
which one is interested. Once FEAT has analyzed the
digraph, it has the information it needs to perform cause
and effect analysis.

What Are Digraphs?

Directed graphs are graphs that consist of a set of
vertices and a set of edges, where there is an edge from
one vertex a to another vertex b. The vertices are drawn
as circles and the edges are drawn as arrows. The direc-
tion of the arrows indicates a causal relationship between
the vertices (fig. 1). The vertex from which the edge
begins is called its source, and the vertex at which the
edge terminates is called its target. Direct graph theory is
an accepted and established area of mathematical study.
Therefore we will only introduce it in this paper to the
extent necessary for an understanding of how it is used in
FEAT. The interested reader may find further
information by consulting the literature.

e

Figure 1. Direction of arrows indicates causal
relationship between vertices.

The structure of the digraph can be represented by a
matrix, and consequently can be easily implemented in a
computer. The conversion from digraph to matrix is
straightforward and is illustrated below in figure 2. This
matrix is called the adjacency matrix', and is the basis
from which other information about the graph can be
derived. The matrix of the graph is obtained by entering

Computer Hardware and Software

either zero or one, depending on whether or not an edge
connects two vertices. The presence of an edge from a to
b in figure 1 indicates an entry of one (1) into the
corresponding matrix entry. However, since there is no
edge from a to c, a zero (0) would be entered in the
corresponding matrix entry.

O o

coc o
coryo
o R on

Figure 2. Conversion from digraph to matrix.

Additional information can be added to the digraph
by applying logical operators to express conditional state-
ments. FEAT uses AND and OR operators to accomplish
its analysis. The AND operator is represented on the
graph as a vertical bar with a horizontally placed arrow at
its center. An OR operator is simply two or more edges
whose target is the same vertex. Theses operators (fig. 3),
and their use in FEAT (figs. 4 & 5), are described below.

The “AND” gate is shown in figure 5. The AND
gate is used when both event A and event B must occur in
order for event C to occur. Conversely, if only event A
occurs or if only event B occurs, then event C does not
occur.

0

OR-GATE AND-GATE

Figure 3. FEAT theses operators.

Event A

Event C

Event B

Event A OR Event B causes Event C

Figure 4. FEAT OR operator.

Computer Hardware and Software

Event A
Event C
Event B
Event AAND Event B cause Event C

Figure 5. FEAT AND operator.

Analytical Capabilities

The reachability of an event refers to whether there
is a path by which other events in the digraph can be
reached. A given event is said to reach another, if the first
event can cause the second through some path of the
graph. Using the adjacency information derived from the
digraph, reachability can be computed for every event and
pair of events in the digraph. Analysis can be conducted
upstream or downstream from an event node. (References
2, 3, and 4 provide a much more detailed discussion of
digraphs and reachability.)
Reachability information allows FEAT to answer the
following questions about a modeled system:
¢ What happens to the system if “event A (and event B
and event C and ...)” occurs?

* What are the possible causes of “event A"?

* What common cause could account for the
simultaneous indication of numerous events?

= What is the susceptibility of the system to new events
given that one or more events has already occurred, or
the system has been reconfigured due, for example, to
maintenance?

Digraph Example

The following example demonstrates how a digraph
might be implemented for a light and switch. The digraph
provides a methodical way in which to express the topol-
ogy and behavior of a system. It is worth noting that the
digraph itself may have various constructions for the same
information contained in it, depending on who created it.
Different modelers may lay out the digraph differently.
However, for a properly constructed digraph, the same
information will be captured. In the following example
(figs. 6 & 7), power source A provides current to switch
A which connects to the bulb. Similarly, power source B
can energize the bulb.

Power)
SourceA Switch A
O Light Bulb
Power
Source B
g S | JO'_ Light Ground e
—— Switch B

— Power Source
Ground

Figure 6. Digraph model 1.

* It "Power Source A Fails™ or “Switch A Fails
Open™ then “Switch A Qutput Fails.™ This is an example
of OR logic and is shown in the digraph by the arrows
leading into “Switch A Qutput Fails.”

¢ It output from both switches A and B fail. then
they will cause the “"Power at Light Fails.”™ This logic
appears as an AND gate on the digraph (the vertical line).
In this case, the AND gate reflects redundancy designed
into a system.

Why Digraphs?

Directed graphs are useful because they visually
depict the logical topology and dependency relationships
of physical and conceptual systems and processes.
Because they capture causal eftects between events, they
can be used to describe system behavior. Directed graphs
are also easily converted into a matrix and, because of
this, can be readily analyzed in a computer. Creating and
laying out the digraph of a system also formalizes the
method of evaluation during the analytical process, and
provides a standard representation convention. Finally,
digraph analysis is mathematically sound, since methods
tor determining connectivity paths of the digraph vertices
can be mathematically proved.

Switch A Fails Open

Directed Graphs and FEAT

Digraph construction is facilitated by use of an editor
specifically designed for the task. Such an editor is incl-
uded in the FEAT package which consists of two pro-
grams: Digraph Editor and FEAT.

Digraph Editor The Digraph Editor facilitates con-
struction of the digraph model by allowing the user to
create event nodes, edges, and the logic operators, and to
connect and arrange them into a digraph. Event nodes
and edges are laid out and connected using the logic
operators. The pieces that make up a digraph are supplied
in a digraph toolbox from which items may be selected.
These items are placed on the screen and arranged to
produce the system digraph.

Other information is needed to complete the digraph
and to make it usable by FEAT. Event nodes have an
associated text block, which includes information that will
identify the event node to FEAT, describe the event for
the user, and relate the event to a drawing which contains
the component to which the event pertains. This informa-
tion is extracted from tables that the user creates. Digraph
Editor uses the tables to automatically generate a mnemo-
nic reference that FEAT will use to identity the event.

Digraph Editor also provides a number of tools for
validating and verifying the model as it is being
developed. Digraph Editor will check tables for duplicate
entries, check nodes for incorrect form, and determine
whether a selected node has a duplicate in the digraph.
Digraph Editor also contains an algorithm that allows the
user to analyze small or incomplete digraphs while still in
the editor. Once the digraph is completed and the paths in
it are analyzed, FEAT can return answers to questions
regarding the behavior of the modeled system.

Currently, digraph models are created manually by
selecting and arranging digraph components; the modeler
must interpret drawings and other sources of information

Switch A

Source Ground
Failure

Power Source
A Fuils

Power Source
B Fails

O———

Switch B Fails Open

Output Fails

Light Ground
Failure

Light Fails
Power at Light
Fails

Switch B
Output Fails

Bulb Failure

Figure 7. Digraph model 2.

Computer Hardware and Software

to generate the digraphs. This is a laborious task. Conse-
quently, efforts are under way to develop methods to
automatically translate schematics and drawings into
corresponding digraph models.

Digraph Editor is currently only available for the
Macintosh Il class of computer.

FEAT

FEAT is the portion of the package that analyzes
single or multiple digraphs, and graphically displays
causes and effects of events. Propagation results are
shown both on the digraphs and on another associated
graphical representation, such as a schematic or block
diagram. FEAT uses a multi-step algorithm, described in
reference 2, to compute reachability for each event and
pair of events in the digraphs. Events are identified to
FEAT through the mnemonic that is generated by Digraph
Editor. Queries about the behavior of the system are
made by selecting events and telling FEAT to return all of
the causes of that event (targeting), or by telling FEAT to
return all of the effects of that event (sourcing). FEAT
displays all of the single events, and all pairs of events
that may cause a selected event. Multiple events may also
be selected and analyzed. FEAT allows some events to
be temporarily removed from the analysis so that answers
can be obtained about a reconfigured system.

FEAT also contains a feature which allows users to
attach to a schematic, formatted database information and
graphics. In this way, component descriptions, parts lists,
drawings, etc. may be displayed in conjunction with a
schematic.

One of the major advantages of FEAT, as discussed
in reference 2, is that it allows the analysis of very large
systems. Large systems can be digraphed by creating and
connecting a series of smaller digraphs. FEAT under-
stands when propagation occurs across the digraphs.

Planned enhancements to FEAT include the follow-
ing: increasing the speed with which reachability is com-
puted by improving FEAT’s computational algorithm;
provision of a method for computing and displaying
probabilities of events occurring; and computation and
display of the time it takes for an event to propagate
through the graph.

FEAT is currently available for the Macintosh 11
class of computer and for UNIX/X-Windows/OSF-Motif
systems. No programming skill is required to use FEAT,
but a course in digraph modeling is quite helpful in
learning how to construct system models.

Digraphs at NASA
Why NASA Chose Digraphs
NASA’s interest in digraphs began as part of the

Shuttle Integrated Risk Assessment (SIRA) Project.
SIRA was initiated in the wake of the Challenger acci-

Computer Hardware and Software

-18

dent, in an effort to find better ways of assessing risk and
preventing failure. Digraphs support such analysis by
providing end-to-end cause and effect analysis of mod-
eled systems. Digraphs also provide a standard and
methodical approach for conducting safety analysis and
risk assessment. Digraphs capture information in an
easily retrievable format, and facilitate the transfer of
design information. FEAT takes advantage of these
characteristics in a way that aids engineers and analysts
with design, assists safety engineers with risk assessment,
and promotes understanding of system behavior, thereby
making FEAT a good tool for training inexperienced
persons.

What Has Been Done at NASA?

The first system to which digraph analysis was app-
lied was the Space Shuttle Main Engine System (SSME).
Since then, acceptance of digraphs and the use